### Updating IMPLAN's Econometric Regional Purchase Coefficients

Jenny Thorvaldson, Doug Olson, and Greg Alward

MIG, Inc.



# **Presentation Outline**

- Brief overview of IMPLAN
- Regional Purchase Coefficients
  - What are they?
  - How are they estimated?
  - Why did they need updating?
- Methodology for creating new econometric RPCs
- Comparison between RPCs
- Conclusions and ideas for future developments

# IMPLAN

- IMPLAN is a data and software system that describes the structure and function of an economy
- By showing the linkages between industries, households, and government institutions, IMPLAN helps analysts answer questions related to:
  - Economic Structure
  - Economic Impacts

# **Regional Purchase Coefficients**

- Reliable estimates of inter-regional trade flows are integral to this process
  - Economic Structure: Show possibilities for import substitution, etc.
  - Economic Impact: Influence the size of multiplier effect
- RPCs describe the proportion of <u>local demand</u> for a commodity that is purchased from <u>local producers</u>
  - RPCs are region and commodity specific
  - Higher RPCs = less leakage = greater multiplier effect
- 2 methods for estimating RPCs in IMPLAN:
  - National tradeflow model (a gravity model)
  - Econometrics (regression analysis)



# **Tradeflow RPCs**

- Based on "observed" trade flows as opposed to statistical estimation
- Internally consistent: sum of all states' domestic imports = sum of all states' domestic exports
- Fixed: not responsive to edits to the underlying study area data
- Not currently available at zip-code level



# **Econometric RPCs**

#### Procedure:

- 1. Use a proxy for trade flows as dependent variable
- 2. Use data from IMPLAN as explanatory variables
- 3. Estimate the coefficients on those explanatory variables
- 4. In IMPLAN software: Combine the estimated coefficients with any model's data to calculate RPCs "on-the-fly"

#### Pros:

- As model data is edited, RPCs change accordingly
- Can be used for regions without trade flow data (e.g., zip-codes)



# **Econometric RPCs**

- <u>Current methodology</u>: Uses current IMPLAN data to calculate the RPCs, but coefficients estimated in 1988 (by Alward and Despotakis) using 1977 data
  - Outdated coefficients
  - Available for 84 shippable (i.e., manufactured) commodities only
- <u>New Methodology</u>: Also uses current IMPLAN data to calculate the RPCs, but coefficients estimated using 2009 data
  - Updated coefficients
  - More observations:
    - More commodities (425 vs. 84)
    - Larger sample size (3,142 vs. 51)
  - Enhanced variable set

## Dependent Variable – Old Method

$$RPC_{i}^{L} = \frac{X_{i}^{LL}}{Gross Demand_{i}^{L}}$$
$$= \frac{X_{i}^{LL}}{(X_{i}^{LL} + M_{i}^{UL} + M_{i}^{WL})}$$

Dependent Variable: M<sub>i</sub><sup>UL</sup>/X<sub>i</sub><sup>LL</sup>



## Explanatory Variables – Old Method

EmpComp<sub>i</sub><sup>L</sup> Employment<sub>i</sub><sup>L</sup>

Employment<sub>i</sub><sup>L</sup>

Employment<sub>i</sub><sup>ROUS</sup>

Included to help explain differences in consumption and production patterns

Proxy for supply

Employment<sup>L</sup>/TotalEmployment<sup>L</sup> Employment<sup>ROUS</sup>/TotalEmployment<sup>ROUS</sup>

LandArea<sup>L</sup>

LandArea<sup>ROUS</sup>

Proxy for establishments

Proxy for transportation costs

## Explanatory Variables – New Method

EmpComp<sub>i</sub><sup>L</sup> Employment<sub>i</sub><sup>L</sup>

Employment<sub>i</sub><sup>L</sup>

Employment<sub>i</sub><sup>ROUS</sup>

Employment<sup>L</sup>/TotalEmployment<sup>L</sup> Employment<sup>ROUS</sup>/TotalEmployment<sup>ROUS</sup>

LandArea<sup>L</sup>

LandArea<sup>ROUS</sup>



LaborIncome<sub>i</sub><sup>L</sup> Employment<sub>i</sub><sup>L</sup>

Supply<sup>L</sup>/Demand<sup>L</sup> Supply<sup>ROUS</sup>/Demand<sup>ROUS</sup>

Same

Same

PopDensity<sup>L</sup> PopDensity<sup>ROUS</sup>

### Dependent Variable – New Method

### Dependent Variable: Tradeflow RPC



# **Econometric RPCs – Comparison**

- 3 Econometric RPCs for comparison:
  - **Old Method**: IMPLAN's Current Methodology

Old variable set, coefficients estimated with1977 data, RPCs calculated with 2009 data

Intermediate Method: Same Variables, Updated Coefficients
Old variable set, coefficients estimated with 2009 data, RPCs calculated with 2009 data

### • New Method: New Variables, Updated Coefficients

New variable set, coefficients estimated with 2009 data, RPCs calculated with 2009 data

## Comparison – Model Fit

### Manufactured Commodities

|                             | Old              | Intermediate      | New     |
|-----------------------------|------------------|-------------------|---------|
|                             | Method           | Method            | Method  |
| Observations                | 4,284            | 983,446           | 983,446 |
| Adjusted-R <sup>2</sup>     | 0.32             | 0.92              | 0.94    |
| Statistical Significance of | All but          | All but Land Area | All     |
| Individual Variables        | Employment ratio | ratio             |         |

### Non–Manufactured Commodities

|                                                     | Old<br>Method | Intermediate<br>Method | New<br>Method |
|-----------------------------------------------------|---------------|------------------------|---------------|
| Observations                                        | n/a           | 351,904                | 351,904       |
| Adjusted-R <sup>2</sup>                             | n/a           | 0.5291                 | 0.8831        |
| Statistical Significance of<br>Individual Variables | n/a           | All                    | All           |

# Comparison – Model Fit

| Commodity                                  | Adjusted-R <sup>2</sup> | Intermediate<br>Method RPC | New Method<br>RPC | Tradeflow<br>RPC |
|--------------------------------------------|-------------------------|----------------------------|-------------------|------------------|
| <i>Wild game products, pelts, and furs</i> | 0.16                    | 0.82                       | 0.52              | 0.58             |
| Agriculture and forestry support           | 0.20                    | 0.10                       | 0.11              | 0.22             |



## **Comparison to Tradeflow RPC**

- New Econometric RPCs closer than Intermediate Econometric RPCs to Tradeflow RPCs in 93% of all cases
- Of the remaining 7% of cases:
  - The commodities that were farthest off did not show up very often
  - The commodities that showed up most often were not very far off
- Average absolute difference between econometric RPCs and Tradeflow RPC:
  - Intermediate Method: 0.5232
  - New Method: 0.0134

# Conclusions

- Updating the data used for estimation and improving the set of variables used in the equation both improved RPC estimation
- Would be worthwhile to investigate further those cases in which the new method did not improve upon the old method
- Questions? Comments?
- www.implan.com



## **Tradeflow Model**

Import and export flows between regions are thought to be <u>directly</u> related to the "mass" of their economies and <u>inversely</u> related to the "distance" between them

Gravity = 
$$G\left[\frac{(Mass_i \times Mass_j)}{(Dist ance_{ij})^2}\right]$$

# Tradeflow Model – "Mass"



# Tradeflow Model – "Distance"



#### **Commodity Flow Survey**

• Shipment mode by commodity: which  $d_{ij}$  or weighted average of  $d_{ij}$ s to use.

Akran

Canto

- Distance versus tonnage shipped: functional form of distance function.
- Average distance moved for each ton, by commodity: calibration target (*b* is adjusted for each commodity until the sum of *T<sub>ij</sub>*s for that commodity (for all *i* and *j*) within 10% of the national average movement of that commodity.