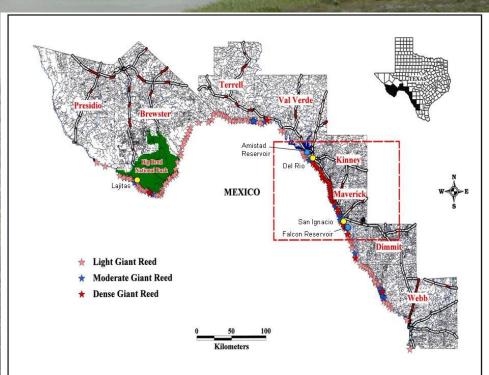


Benefit-Cost, Per-Unit Cost, and Impact Analysis of Potential Water Saved from the Biological Control of *Arundo donax* along the Rio Grande [River]


Emily K. Seawright, M. Edward Rister, Ronald D. Lacewell, Dean A. McCorkle, Allen W. Sturdivant, John A. Goolsby, and Chenghai Yang

June 5, 2010

170 mile study area

Data

Arundo donax Infestation

- Focusing on Rio Grande River Basin
- 15,715 acres in 2002 (Goolsby)
- 18,072 acres in 2008 (Goolsby)
- Assume Growth
 - 2.36% per year
 - Meets 15% growth between 2002 and 2008 $\,$

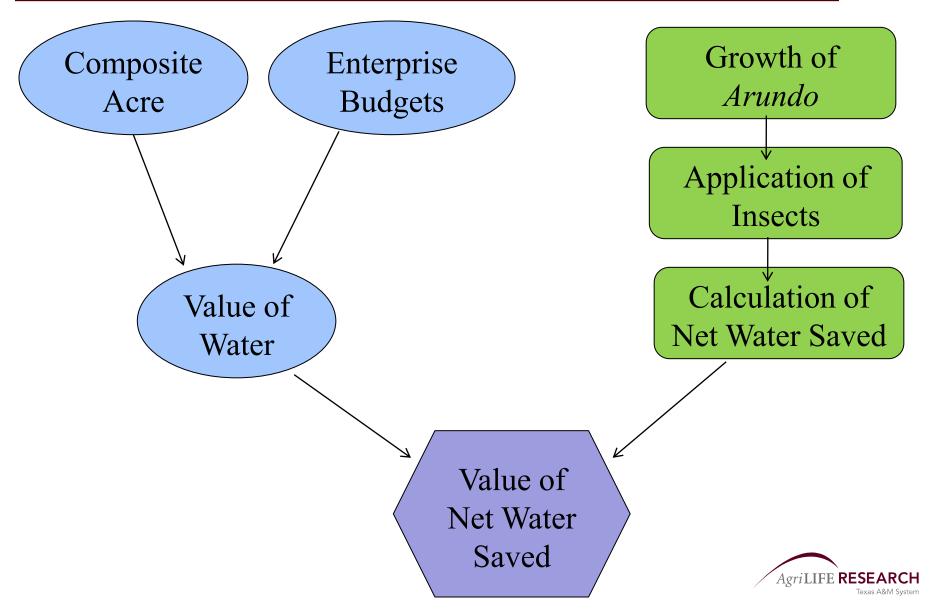
Water

- 4.37 acre-feet per acre annually

Grows 6-8 m tall

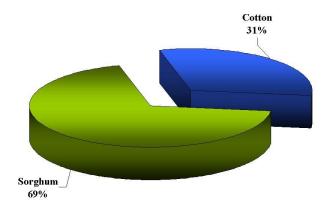
4 Bio Control Insects

- --wasp*
- --fly
- --scale*
- --leafminer

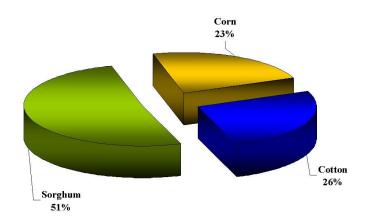


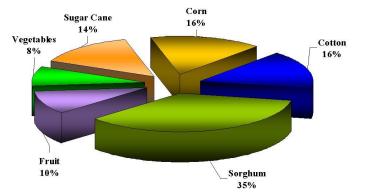
Objective

- Scope of research area
 - Texas Lower Rio Grande Valley to Amistad Reservoir
- Determine direct economic impact (value to irrigation) of water saved from biological control of *Arundo donax*
- Perform benefit-cost analysis of the project
- Determine per-unit cost of water saved
- Conduct sensitivity analyses
- Formulate impact analysis and implications of saved water to economy



Objective-Model Overview


Composite Acre

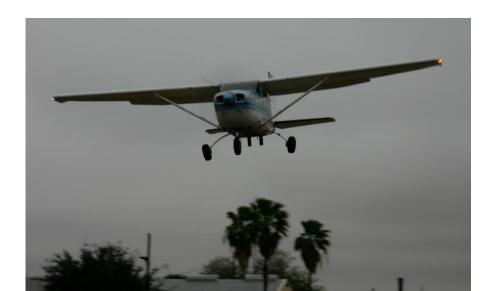

Dryland Composite Crop Acre

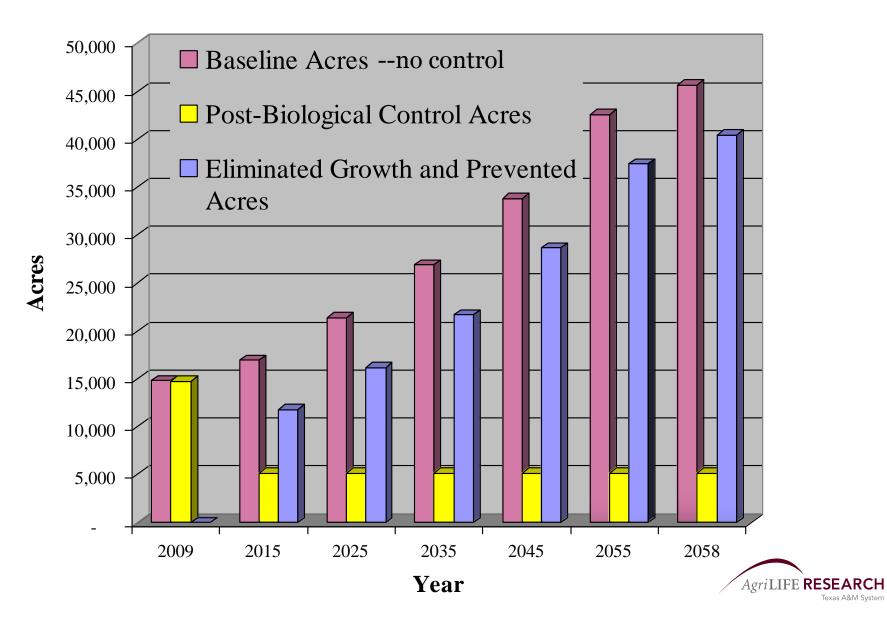
Low-Marginal-Value Irrigated Composite Crop Acre

High-Marginal-Value Irrigated Composite Crop Acre

Returns to Water per Acre-Foot

Returns to Water per Acre-Foot for Irrigated Crop Composite Acres for the Texas Lower Rio Grande Valley


	Value of Water	Value of Water
	(Market)	(Normalized)
Irrigated (Low)	\$ 187.98	\$ 139.22
Irrigated (High)	\$ 307.29	\$ 279.99


Control Applied

- 67% control in 2 years on miles treated
 - 45% control of area treated in first year
 - 22% control of area treated in subsequent year
- Once treated, acreage controlled assumed constant

Projected Acreage of *Arundo*, with and without the USDA-ARS, Weslaco, Texas Biological Control Program

Water Use in the Rio Grande

Current flow of the Rio **River Flow** Grande, potentially consumed by annual Arundo; equal to 4.37 ac-ft per acre (i.e., 9/9). Current flow of the Rio Grande which is considered to be the gross amount of water saved by reducing Arundo; equal to 2/3 of Arundo's current 4.37 ac-ft per acre consumption. Estimated net amount of water saved by reducing Arundo; 577.888 ac-ft equal to 2/3 of the gross represents a 10 amount of water saved. Year Average of **Irrigation District** Water Diversions Portion of the net saved water for Cameron. which belongs to the U.S. as per the 1944 Treaty (Stubbs et Hidalgo, Starr, al. 2003); equal to 1/2 of the net Flow of the Rio Grande still Willacy, and amount of water saved. This consumed by Arundo after water is maintained in the Zapata Counties treatment and control (i.e., a reservoir system (i.e., 2/9). (Leidner 2009). conservative assumption); equal to 1/3 of Arundo's current 4.37 ac-ft per acre Portion of the gross consumption (i.e., 3/9). water savings which is estimated to be consumed by replacement plant species (i.e., native Portion of the net saved vegetation); equal water which belongs to to 1/3 of the gross Mexico as per the 1944 amount of water Treaty (Stubbs et al. saved (i.e., 2/9). 2003); equal to $\frac{1}{2}$ of the net amount of water saved (i.e., 2/9). Reservoir

Results: Water Saved and Value

Annual Water Saved and Present Value of Water Saved on Low- and High-Marginal Value Crops, Texas Lower Rio Grande Valley, 2009

Year	Acre-Feet of Wate Saved due to Insect		Returns to Water High-Value ^b (\$ Million)
2009	59	\$0.011	\$0.018
2015	17,173	\$3.2	\$5.3
2025	23,567	\$4.4	\$7.2
2035	31,615	\$5.9	\$9.7
2045	41,744	\$7.8	\$12.8
2055	54,492 🗸 .	\$10.2	\$16.7
2058	58,924	\$11.1	\$18.1
Present Valu	iec	\$97.8	\$159.9

^a Low marginal value composite crop acre returns to water (cotton, corn, and sorghum) value of \$188.

^b High Marginal Value composite crop acre returns to water (cotton, corn, sorghum, fruits, vegetables, sugarcane) value of \$307.

^c Present Value is discounted over 50 years (i.e., 2009 through 2058) at a discount rate of 6.125%.

Benefit-Cost Results

Expected Benefit-Cost Implications and Economic Cost of Water Saved for the USDA-ARS, Weslaco, Texas *Arundo donax* Biological Control Program between San Ignacio and Del Rio, Texas 2009.^a

	Social Benefits (Using Normalized Prices)		
Result Item	Low Value of Water ^a	High Value of Water ^b	Costs
Present Value Over 50 Years (\$ Million)	\$72.4	\$145.7	\$16.5
Annualized Benefits (\$ Million)	\$4.7	\$9.4	
Benefit-Cost Ratio	4.38	8.81	

Annuity Equivalent--Economic Cost of Water Saved (\$/ac-ft) \$44.08

^{a.} Low Value of Water refers to the low marginal returns for water calculated using the composite acre for low value crops (i.e., corn, cotton, sorghum), a value of \$139.22 per acre-foot. The values calculated with the low value of water represent the lower bound of the social benefits to be realized over the 50-year planning horizon.

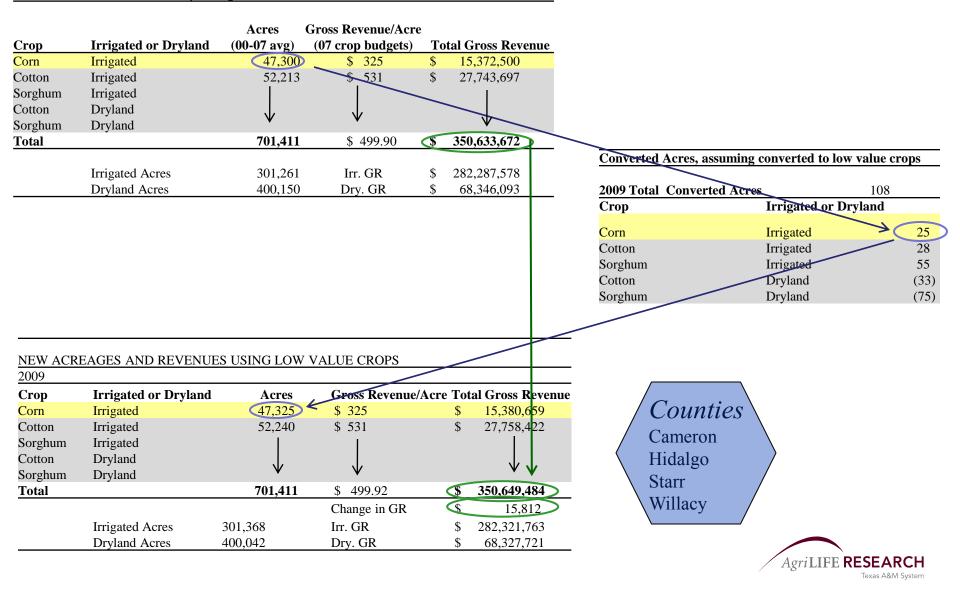
^{b.} High Value of Water refers to the high marginal returns for water calculated using the composite acre for high value crops (i.e., fruits, vegetables, sugar cane, corn, cotton, sorghum), a value of \$279.99 per acre-foot. The values calculated with the high value of water represent the upper bound of the social benefits to be realized over the 50-year planning horizon.

Sensitivity Analysis-Low

Sensitivity Analyses Summary, Benefit-Cost Ratios of Benefits Varying *Arundo* Water Use with Listed Variables for Low-Marginal-Crops in the Texas Lower Rio Grande Valley, 2009

	Annual Water Consumption of Arundo (acre-feet)				
Variable	Variations	2.00	3.00	4.37	7.00
	40.00%	1.56	2.34	3.41	5.47
Efficacy of Insects	67.00%	2.00	3.01	4.38	7.02
	80.00%	2.22	3.33	4.85	7.76
Arundo Acreage Expansion	0.00%	2.00	3.01	4.38	7.02
(post control)	1.50%	2.00	3.00	4.36	6.99
` & '					
Native Vegetation Water Use	20.00%	2.41	3.61	5.26	8.42
	33.33%	2.00	3.01	4.38	7.02
	50.00%	1.50	2.26	3.28	5.26
	** 0.00		1.00		
	\$50.00	0.72	1.08	1.57	2.52
Value of Water	\$139.99	2.00	3.01	4.38	7.02
	\$200.00	3.24	4.86	7.08	11.34
Costs of Program (NPV=\$16.5 million)	-30.00%	2.86	4.30	6.26	10.02
	0.00%	2.00	3.01	4.38	7.02
	30.00%	1.54	2.31	3.37	5.40

Impact Analysis


- IMPLAN model
 - Multipliers for increased economic activity on a county level up to the state and national level
- Estimate change in gross returns by year
- Calculation of Impact for Texas Lower Rio Grande Valley Region
 - Economic output
 - Value added
 - Employment

➤ Up to the farm-gate

Change in Acres and Gross Revenues

2007 Current Condition -- all crops being considered

Impact for the Rio Grande Valley

2009-First Year

- **0-1 jobs** are associated with the biological control program;
- Projected increase in value-added ranges between \$11,000-\$29,000;
- Projected increases in economic output ranges from \$22,000-\$45,000.

Future Impact for the Valley

- Employment, value-added, and economic output continue to increase in association with the benefits from the biological control program
- Rough estimates for employment range from
 - 254-471 jobs 25 years into the future and
 - 492-878 jobs 50 years into the future;
- Rough increases for value-added range from
 - \$5.9-\$15.8 million 25 years into the future
 - \$11.1-\$29.5 million 50 years into the future;
- Rough increases for economic output range from
 - \$11.9-\$24.1 million 25 years into the future
 - \$22.3-\$44.9 million 50 years into the future.

Recognizing the structure of the economy is constant in the model

Implications

Biological control of Arundo appears economic

- Life-Cycle Costs comparable to other water conservation methods in the Valley (e.g., lining irrigation canals)
- Positive Benefit-Cost Ratios
- Sensitivity Analyses performed with positive outcomes
- Positive Economic Impacts to the Texas Lower Rio Grande Valley

