

Economic Impacts of Green Jobs Development in the **Appalachian Region**

By

Kim Jensen, Dayton Lambert, Jamey Menard, Wan Xu, and Burt English

Department of Agricultural & **Resource Economics** University of Tennessee, Knoxville

BEAG | Bio-Based Energy Analysis Grou

Green Jobs in Renewable Energy

- The purpose of this study is to project potential economic impacts of adding renewable energy industries to and the effect on "green jobs" in the Appalachian Region (AR).
- Green jobs are defined as "... familysupporting jobs that contribute significantly to preserving or enhancing environmental quality" (Tennessee Department of Labor Workforce and Development, 2008).
- The United Nations Environment Program definition states, "this includes jobs that help to protect ecosystems and biodiversity; reduce energy, materials, and water consumption through high efficiency strategies; de-carbonize the economy; and minimize or altogether avoid generation of all forms of waste and pollution" (UNEP, 2008).

Renewable Energy and Fuels Production

Energy Efficiency Improvement

Alternative Transportation

The AR and Economic Status

3

- 205,000-square-mile region, spine of the Appalachian Mountains from southern NY to northern MS. WV and parts of 12 other states: AL, GA, KY, MD, MS, NY, NC, OH, PA, SC, TN, and VA (Appalachian Region Commission, 2010).
- Many counties economically distressed or at risk categories.
- ARC categorizes counties based on 3 yr average unemployment rates, per capita market income, and poverty rates-distressed, at-risk, transitional, competitive, or attainment.
- Distressed counties those ranking worst 10 percent of the nation.

Figure 1. Economic Status of Counties in the AR

Data source: Appalachian Regional Commission

- Where are renewable energy jobs currently located?
- Where is there additional potential for renewable energy?
- How might additional renewable energy impact jobs?

Energy Sources and Example Sectors in "Green Industry"

Energy Sources	Sector comprising "Green Industry"
Solar	Examples: Semiconductors; Architectural & Engineering Services; Computer System Design
Wind	Examples: Turbine & Turbine Manufacturing; Motor & Generator Manufacturing; Computer Systems Design
Biofuels- Ethanol, Biodiesel	Examples: Logging or Farming, Transportation; Machine Operators; Process Engineers; Lab technician; Chemical Equipment Operators and Tenders; and Chemist; Metal Tank, Heavy Gauge, Manufacturing; Architectural & Engineering Services; Manufacturing & Industrial Bldgs. (Buildings, Civil/Mechanical/Electrical; Land/Prep/Trans Access); Conveyor & Conveying Equipment Manufacturing (Feedstock & Product Storage and Handling)
Landfill Gas	Examples: Iron, Steel Pipe & Tubing; Metal Tank, Heavy Gauge, Manufacturing; Oil & Gas Field Machinery & Equipment; Air Purification Equipment Manufacturing; Electric Power & Specialty Transformer Manufacturing
Dairy Methane	Examples: Textile Bag & Canvas Mills; Metal Tank, Heavy Gauge, Manufacturing; Pump & Pumping Equipment Manufacturing
Wood / Dedicated Energy Crop Co-Fire	Examples: Logging or Farming; Commercial Machinery Repair & Maintenance; Other New Construction; Prefabricated Metal Buildings and Components; Conveyor & Conveying Equipment Manufacturing; Industrial Process Furnace & Oven Manufacturing; Industrial Process Variable Instruments

Figure 2. Share of "Green Sector" Business Establishments in ARC Region (denominator – all business establishments in ARC Region, 2000 and 2007)

2000 total establishments = 536,515 2007 total establishments = 564,724 Data Source: County Business Patterns Figure 3. Regional Distribution of Business establishments Belonging to Wind, Solar, Wood co-fire, Dairy methane, and Landfill Gas Sectors, 2007

Electricity

•Variety of technologies used, some are utilities others are industrial generators.

•About 26% of these facilities are coal. AR states comprise nearly 44% of US coal consumption.

Figure 4. Electricity Generators in the AR Study Region

Data source: Energy Information Administration, Database of Electricity Generators

Wind Energy

Figure 5. Wind Resources Maps-80 meter height

The U.S. map shows the predicted mean annual wind speeds at 80m height (at a spatial resolution of 2.5 km that is interpolated to a finer scale). Areas with annual average wind speeds around **6.5** m/s and greater at 80-m height are generally considered to have suitable wind resource for wind development.

Figure 6. Wind Electricity Generators in the AR Study Region

Data source: Energy Information Administration, Database of Electricity Generators

Current nameplate in AR of about 827 $\ensuremath{\mathsf{MW}}$

Wind Energy with Employment Location Quotient

- Counties where the concentration of sectors in supporting operations of the Wind Energy sector is high (in red) and low (in blue)
- Provides idea of "regional comparative advantage" for industry and possibly industry potential

Counties where the concentration of employment in industries supporting the Wind Energy sector is high (in red) and low (in blue)

Figure 8. Concentration of Wind Energy Sector Employment in the AR Study Region

Figure 7. Concentration of Wind Energy Sector in the AR Study Region

Landfill Gas

- Red=Operational landfills generating LFG electricity, Nameplate capacity=128.5
- Yellow=candidate landfills
 with at least 2 million tons of
 waste in place (in yellow)
- Based on existing MW capacity/tons of waste and the tons of waste in candidate landfills, additional potential=94.2MW

Figure 9. Landfill Gas Electricity Generators and Candidate Landfills in the AR Study Region

Data source: EPA Landfill Methane Gas Outreach Program

Landfill Gas Energy with Employment

12

- Counties where the concentration of sectors in the LFG sector is high (in red) and low (in blue)
- Provides idea of "regional comparative advantage" for industry and possibly industry potential

 Counties where the concentration of employment in the Landfill energy sector is high (in red) and low (in blue)

Figure 10. Concentration of Landfill Gas Energy Sector in the AR Study Region Figure 11. Concentration of Landfill Gas Energy Sector Employment in the AR Study Region

Facilities Using Wood and Potential Co-Firing Facilities

Figure 12. Electricity Generators Using Wood in the AR Study Region

About 1,125.2 MW of capacity.

Figure 13. Electricity Generators Using Coal, Not Currently Using Wood or other Biomass, <200MW Capacity Constitute about 2,988.7 MW of potential capacity. At a co-fire rate of 15%, this would be about 448.3 MW of co-fire.

Figure 14. Potential Biomass Availability (Tons) at \$70/ton, Wood and Switchgrass

Thinnings 4.7 million

Switchgrass 57.0 million

Urban Wood Waste 3.2 million

> The co-fire facilities discussed in Figure 12. would require about 1.67 additional million dry tons of biomass

Direct Wood Energy with Employment Location Quotient

- Counties where the concentration of sectors involved in operating the Cofiring sector is high (in red) and low (in blue)
- Provides idea of "regional comparative advantage" for industry and possibly industry potential

Figure 15. Concentration of Co-Firing Energy Sector in the AR Study Region Counties where the concentration of employment in sectors involved in the Wood co-fire energy sector is high (in red) and low (in blue)

Figure 16. Concentration of Co-Firing Energy Sector Employment in the AR Study Region

Dairy Cows and Animal Methane Facilities

Figure 17. Number of Milk Cows, by County, in the AR Study Region

Source: USDA/NASS

Figure 18. Animal Methane Facilities in the AR Study Region

Source: EPA AgStar Program

Current dairy methane digester capacity is about 1.3 MW. Generally, methane facilities are feasible at about 1,000 cow dairies or larger, about .2kW per cow. If dairy cow numbers if counties with at 5,000 cows per county are totaled, the sum is 454,495 dairy cows, or enough to support about 80.4 MW of digester capacity.

Dairy Methane Gas

Figure 19. Concentration of Dairy Methane Gas Energy Sector in the AR Study Region Figure 20. Concentration of Dairy Methane Gas Energy Sector Employment in the AR Study Region

Biodiesel Feedstocks

 Not highly soybean production intensive.
 Many facilities in the ARC region are multifeedstock.

Yellow grease-used frying oils from deep fryers, or rendering plants.

1.5 billion lbs yellow grease (estimated185.6 million gallons) in 2007.

Theoretical yield of yellow grease per cap.
9 pounds/yr and biodiesel yield is .13
gallons/pound yellow grease.

ARC Region population is 25 million, so the yellow grease biodiesel potential is about 29 mill. gal./year

Figure 21. Population MSA's

Ethanol Feedstocks

Figure 22. Potential Biomass Availability of Switchgrass at \$70/ton

Ethanol is often made from corn, however, corn is not heavily planted in the AR.

Feedstock could potentially be transported into the region.

Commercialization of cellulosic ethanol could open up new capabilities to use feedstocks such as switchgrass or wood wastes.

Total availability is about 57 million tons, with 990,000 tons required for a commercially sized facility.

Biodiesel and Ethanol Facilities

Figure 23. Biodiesel Conversion Facilities in the AR Study Region

Data source: National Biodiesel Board

Current capacity is 108.5 MGPY

Figure 24. Ethanol Conversion Facilities in the AR Study Region

Data source: Renewable Fuels Association

Current capacity is 237 MGPY

Projecting Additional Jobs

IMPLAN (Impact Analysis for Planning) employs a regional social accounting system to provide descriptive measures of the economy including total industry output and employment for over 500 industries in the economy.

Renewable energy industries are not already included in the IMPLAN model

Built in renewable energy industries based upon cost and output information from other studies such as from Department of Energy, Electric Power Research Institute, or other universities.

Direct measures are those from the activity of the industry itself.
 Total measures include both direct and the multiplier or economic
 "ripple" effects from the additional activity in the industry.

Estimated Current Operating Renewable Energy Impacts (2010)

22

Туре	Capacity	Capacity Units	Direct TIO	Total TIO	Direct Jobs	Total Jobs
			Milli	on \$	Jc	obs
Wind	897.4	MW	\$300.4	\$629.0	393	2,923
Solar	0.0	MW	n/a	n/a	n/a	n/a
Wood	1,134.5	MW	\$813.8	\$1,645.6	509	6,502
Landfill Gas	146.2	MW	\$111.6	\$239.8	954	2,016
Dairy Methane	1.3	MW	\$0.8	\$1.5	11	18
Ethanol	237	MGPY	\$570.7	\$928.0	178	4,020
Biodiesel	108.5	MGPY	\$329.6	\$524.1	109	1,426

Scenario 1: Projected Operating Renewable Energy Impacts for 2020 (2010\$)

Туре	Capacity	Capacity Units	Direct TIO	Total TIO	Direct Jobs	Total Jobs
			Mil	lion \$		Jobs
Wind	1,153.1	MW	\$385.9	\$807.9	504	3,755
Solar	100.0	MW	\$37.7	\$50.0	10	107
Wood	1,970.8	MW	\$1,413.7	\$2,858.6	884	11,294
Landfill Gas	176.5	MW	\$134.7	\$289.3	1,151	2,433
Dairy Methane	1.3	MW	\$0.8	\$1.5	11	18
Ethanol	277.5	MGPY	\$600.0	\$867.0	308	2,021
Biodiesel	215.3	MGPY	\$654.0	\$1,040.0	215	2,829

* Assumes EIA growth rates for all electricity and biofuels, solar is assumed to incorporate solar PV to meet RPS for NY and PA (geographically wtd), dairy methane assumed to grow at USDA baseline projections of dairy cattle.

23

Scenario 2: Projected Operating Renewable Energy Impacts for 2020 with "Candidate Facilities"* (2010\$)

24							BEAG
	Туре	Capacity	Capacity Units	Direct TIO	Total TIO	Direct Jobs	Total Jobs
				Mill	ion \$		Jobs
	Wind	1,153.1	MW	\$385.9	\$808.0	504	3,755
	Solar	100.00	MW	\$37.8	\$50.0	10	107
	Wood Co-Fire	1,970.8	MW	\$1,413.7	\$2,858.6	884	11,294
	Switchgrass Co-Fire	448.3	MW	\$321.6	\$486.4	201	1,701
	lfg	270.7	MW	\$206.6	\$443.7	1,765	3,731
	Dairy Methane	81.8	MW	\$47.2	\$93.6	682	1,091
	Cellulosic Ethanol	3,872.9	MGPY	\$8,372.2	\$12,098.0	4,303	28,206
	Biodiesel	250.0	MGPY	\$759.5	\$1,207.6	250	3,285

* EIA growth rates for wind, geographic wtd RPS requirements for solar in NY and PA, coal facilities< 200 MW not already using biomass, candidate landfills > 2 million tons of waste in place, biodiesel using all potential yellow grease, ethanol using all potential switchgrass not used in co-fire, dairy methane in counties with at least 5,000 cows.

Scenario 2: Projected Investment in Renewable Energy Facilities Impacts for 2020 with "Candidate Facilities"* (2010\$)

5						BE/
Туре	Added Capacity	Capacity Units	Direct TIO	Total TIO	Direct Jobs	Total Jobs
			Mil	lion \$	J	obs
Wind	255.7	MW	\$680.8	\$1,312.2	3,530	8,692
Solar	100.0	MW	\$547.5	\$1,234.5	2,814	8,467
Wood Co-Fire	836.3	MW	\$263.3	\$545.0	2,125	4,532
Switchgrass Co-Fire	448.3	MW	\$141.1	\$292.10	1,138	2,428
LFG	124.5	MW	\$227.2	\$414.7	1,069	2,533
Dairy Methane	80.4	MW	\$326.3	\$634.6	1,876	4,355
Cellulosic Ethanol	3,635.9	MGPY	\$7,842.7	\$14,383.0	32,639	82,613
Biodiesel	141.5	MGPY	\$148.3	\$275.9	691	1,723

* EIA growth rates for wind, geographic wtd RPS requirements for solar in NY and PA, coal facilities< 200 MW not already using biomass, candidate landfills > 2 million tons of waste in place, biodiesel using all potential yellow grease, ethanol using all potential switchgrass not used in co-fire.

Figure 25. Scenario 2: Shares of Operating Jobs Among Top 5 Industries Across All Renewables, 2020

26

Figure 26. Scenario 2: Shares of Investment Jobs Among Top 5 Industries Across All Renewables, 2020

Sub-Regional Comparisons

Figure 27. Sub-Regions Within the AR Study Region

Figure 28. Projected Renewable Energy Jobs in the AR Study Region for 2020, by Sub-Region Under Scenario 2

Figure 29. Projected Renewable Energy Jobs in the AR Study Region for 2020, by Sub-Region and Renewable Type, Under Scenario 2

Conclusions

- □ The AR has great biomass production potential
- Biomass-linked renewable energy will potentially have the largest overall impact in the lower sub-region
- The renewable energy industry will likely be comprised of a mixture of technologies
- The renewable energy industry will have ripple effects through the economy as evidenced by comparing the direct and total impacts
- Potential policies on the horizon could impact renewable energy and associated jobs in the region
- Growth in these industries will likely be reliant on job skill training

Potential Jobs With Renewable Energy

			956
	Projecte	d Jobs Per Million	S Operating *
	Direct from the	Total Including	Jobs from Multiplier
Technology	Industry	Multiplier Effects	Effects
Biodiesel (Soybeans)	0.17	6.31	6.14
Biodiesel (Yellow Grease)	0.33	4.33	4.00
Co-fire (Switchgrass)	2.30	9.86	7.56
Co-fire (Wood)	0.63	7.99	7.36
Dairy Methane	14.43	23.08	8.65
Direct Fire Wood	1.46	10.63	9.17
Ethanol (Switchgrass)	2.63	9.17	6.53
Ethanol (Wood)	0.46	11.56	11.10
Landfill	8.55	18.06	9.51
Solar Commercial	0.26	2.83	2.57
Wind	1.31	9.73	8.42

*Jobs from year-to-year operations of a facility. An additional set of **investment impacts** would occur at the time the facility is constructed.

Renewable Energy Policies

BEAGE

State Level Renewable Energy Standards

State	Amount	Year
Maryland	20%	2022
New York	24%	2013
North Carolina	12.50%	2021
Pennsylvania	8%	2020
Virginia*	12%	2022

*Virginia has set voluntary goals for adopting renewable energy instead of portfolio standards with binding targets.

WV and parts of 12 other states: AL, GA, KY, MD, MS, NY, NC, OH, PA, SC, TN, and VA

Federal Renewable Fuel Standard-The RFS program was originally created under the Energy Policy Act (EPAct) of 2005, requiring the volume of renewable fuel required to be blended into gasoline to 7.5 billion gallons by 2012 (RFS1). Under the Energy Independence and Security Act (EISA) of 2007, the Renewable Fuel Standard program increases the volume of renewable fuel required to be blended into transportation fuel from 9 billion gallons in 2008 to 36 billion gallons by 2022 (RFS2).