Low Cost Wind Energy: Comparing Distant Wind Resources to Local Resources

David Hoppock Dalia Patino Echeverri, PhD

Climate Change Policy Partnership

Duke University

Policy Drivers: RPS

Renewable Portfolio Standards

WA: 15% by 2020* ME: 30% by 2000 VT: (1) RE meets any increase New RE: 10% by 2017 MN: 25% by 2025 in retail sales by 2012; MT: 15% by 2015 (Xcel: 30% by 2020) (2) 20% RE & CHP by 2017 NH: 23.8% by 2025 ND: 10% by 2015 MI: 10% + 1,100 MW MA: 15% by 2020 OR: 25% by 2025 (large utilities)* bv 2015* + 1% annual increase 5% - 10% by 2025 (smaller utilities) (Class I Renewables) SD: 10% by 2015 WI: Varies by utility; NY: 24% by 2013 RI: 16% by 2020 10% by 2015 goal 🔆 NV: 25% bv 2025* CT: 23% by 2020 IA: 105 MW OH: 25% by 2025⁺ CO: 20% by 2020 (IOUs) **A PA: 18% by 2020**⁺ 10% by 2020 (co-ops & large munis)* WV: 25% by 2025*† 🔅 IL: 25% by 2025 ☆ NJ: 22.5% by 2021 CA: 33% by 2020 UT: 20% by 2025* KS: 20% by 2020 VA: 15% by 2025* **MD: 20% by 2022** MO: 15% by 2021 🗘 AZ: 15% by 2025 DE: 20% by 2019* C NC: 12.5% by 2021 (IOUs) **DC: 20% by 2020** 10% by 2018 (co-ops & munis) 🔆 NM: 20% by 2020 (IOUs) 10% by 2020 (co-ops) TX: 5,880 MW by 2015 29 states & DC HI: 40% by 2030 have an RPS 6 states have goals State renewable portfolio standard Minimum solar or customer-sited requirement State renewable portfolio goal Extra credit for solar or customer-sited renewables Solar water heating eligible Includes non-renewable alternative resources INTERSTATE RENEWABLE ENERGY COUNCIL

www.dsireusa.org / January 2010

Why Wind?

- Widely available
- Fastest growing renewable resource
- Low cost

EIA AEO 2009 Overnight Construction Costs

Onshore Wind Offshore Wind Solar Thermal Solar PV Geothermal Biomass \$1932/kW \$3851/kW \$5021/kW \$6038/kW \$1711/kW* \$3766/kW

*Dry stream plant - limited availability

Barriers to Wind

Transmission

- Best wind far from population centers
- Permitting, siting, cost allocation of long distance

transmission is very difficult

- >300 GW wind in transmission queues
- Curtailment at existing wind farms

Objective: Determine lowest cost wind resource to meet Illinois RPS

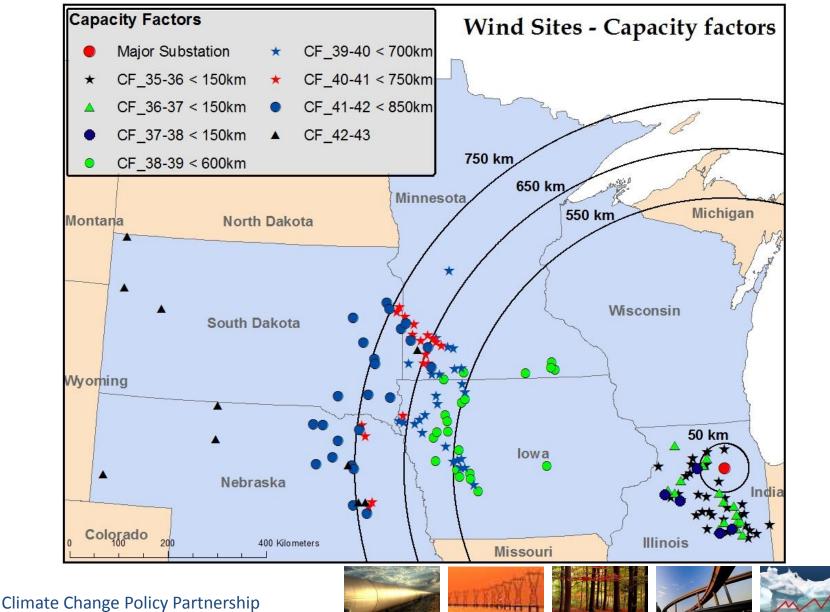
Costs: Capital cost of new wind & transmission

Assumptions

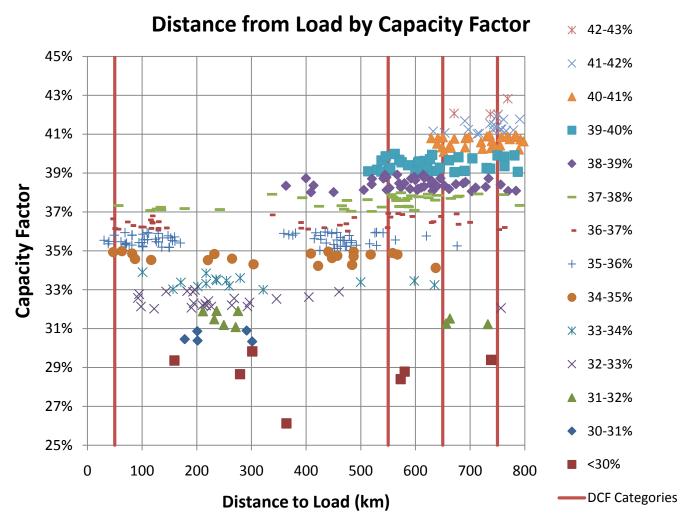
- Requires new transmission
- Capacity factor fully characterizes wind
 - O&M, integration, wholesale prices unchanged
- Demand source is major substation outside of

Chicago

Distant vs. Local Wind Resources Distant wind resources have higher capacity factors, lower wind capital costs


Local wind resources require less transmission, reducing transmission capital costs

Trade off: wind CC vs. transmission CC



Potential Wind Sites: NREL Eastern Wind Integration Study (EWITS)

Potential Wind Sites, cont.

Four Wind Distance Capacity Factor Categories

- 1. Reference wind 36% CF, 50 km from load, 100 m IEC Class 3 turbine
- 2. 39.5% CF, 550 km from load, 80 m IEC Class 2
- 3. 41% CF, 650 km from load, 80 m IEC Class 2
- 4. 42% CF, 750 km from load, 80 m IEC Class 2

Wind Installed Capital Cost

DOE 2008 Wind Technologies Market Report

- 2009 estimate \$2,120/kW
- 2007-2008 Midwest average \$1,913/kW

100 m IEC Class 3 wind turbines (Reference wind)

installed capital costs 14% higher

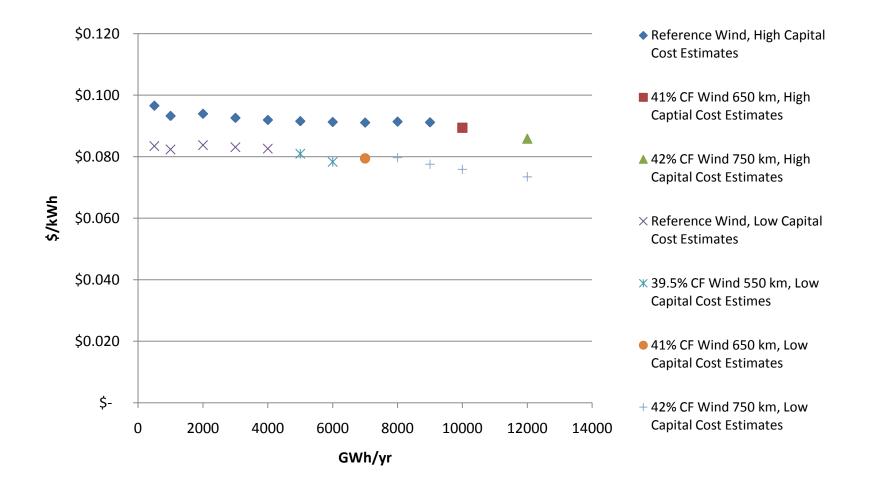
HVAC & HVDC Transmission Capital Cost Estimates

Reviewed transmission planning documents

- Midwest ISO Transmission Expansion Plan
- Other transmission planning documents

HVDC cost estimates are difficult to obtain

Comparison Metrics


Lowest Cost Wind Resource (\$/kWh) by Delivered Energy

Lowest Cost Wind Resource (\$/kWh) by Installed Capacity

Breakeven Capacity: Turbine capital cost savings = Capital cost of additional transmission → Compare to transmission capacity

Lowest Cost Wind Resource (\$/kWh) by Delivered Energy

Discussion

For high CC estimates, up to 9,000 GWh/year, reference wind is low cost – 2.9 GW For low CC estimates, up to 4,000 GWh/year, reference wind is low cost – 1.3 GW

Largest wind farm: 781 MW Ave. development in U.S. (2008): 83 MW

Low cost option for short term RPS requirement is local wind

Discussion

Low cost option for long term RPS requirements is distant wind, *if economies of scale are feasible*

- 1.2 GW distant wind farm producing ~4,000 GWh/yr (39.5% CF, 550 km) \$3-\$3.6 billion
- Does not include increased risk

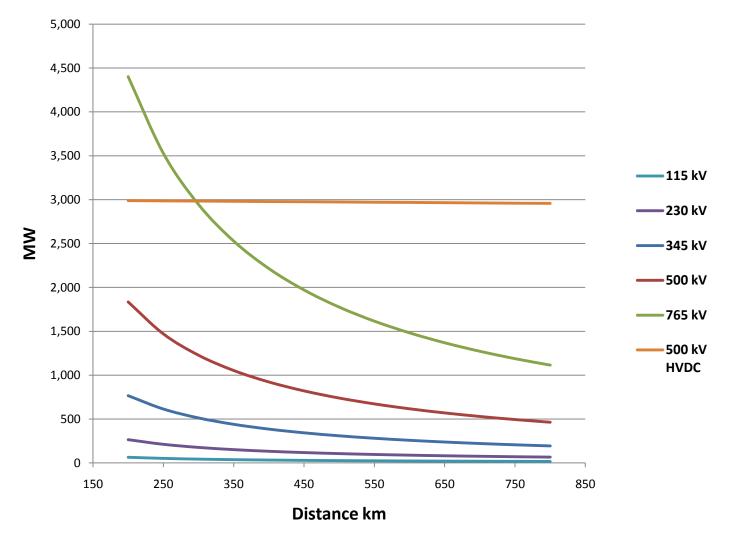
Large scale investment in distant high quality wind resources will not occur without policies to remove obstacles to transmission expansion

Lowest Cost Wind Resource (\$/kWh) by Installed Capacity

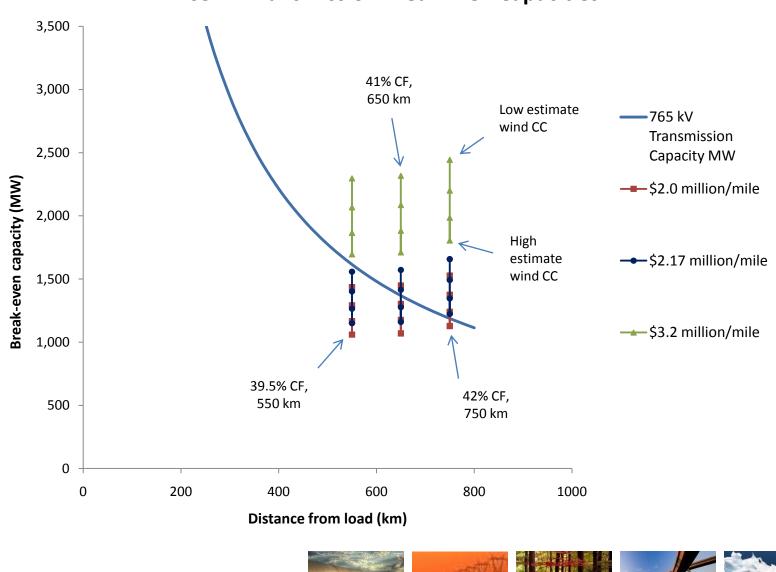
	High Tran	smission &	& Wind Capital	Cost Estimate	Low Transmission & Wind Capital Cost Estimate			
Installed Capacity (MW)	Lowest Cost Wind Resource	\$/kWh	Transmission voltage kV	Transmission constrained CF	Lowest Cost Wind Resource	\$/kWh	Transmission voltage kV	Transmission constrained CF
100	Reference	\$ 0.100	230	36.0%	Reference	\$ 0.085	230	36.0%
200	Reference	\$ 0.095	230	36.0%	Reference	\$ 0.083	230	36.0%
300	Reference	\$ 0.093	230	36.0%	Reference	\$ 0.082	230	36.0%
400	Reference	\$ 0.095	230	35.1%	Reference	\$ 0.084	230	35.1%
500	Reference	\$ 0.960	345	36.0%	Reference	\$ 0.084	345	36.0%
600	Reference	\$ 0.094	500	36.0%	Reference	\$ 0.084	500	36.0%
700	Reference	\$ 0.094	500	36.0%	Reference	\$ 0.084	500	36.0%
800	Reference	\$ 0.093	500	36.0%	Reference	\$ 0.083	500	36.0%
1000	Reference	\$ 0.093	500	36.0%	Reference	\$ 0.083	500	36.0%
1200	Reference	\$ 0.092	500	36.0%	Reference	\$ 0.083	500	36.0%
1400	Reference	\$ 0.092	500	36.0%	39.5%	\$ 0.081	765	39.5%
1600	Reference	\$ 0.092	500	36.0%	39.5%	\$ 0.079	765	39.5%
1800	Reference	\$ 0.091	500	36.0%	39.5%	\$ 0.078	765	39.4%
2000	Reference	\$ 0.091	500	36.0%	39.5%	\$ 0.079	765	38.5%
2500	42%	\$ 0.091	HVDC	42.3%	42%	\$ 0.077	HVDC	42.3%
3000	42%	\$ 0.087	HVDC	42.3%	42%	\$ 0.074	HVDC	42.3%
3500	42%	\$ 0.086	HVDC	41.5%	42%	\$ 0.074	HVDC	41.5%
4000	42%	\$ 0.088	HVDC	39.4%	42%	\$ 0.078	HVDC	39.4%

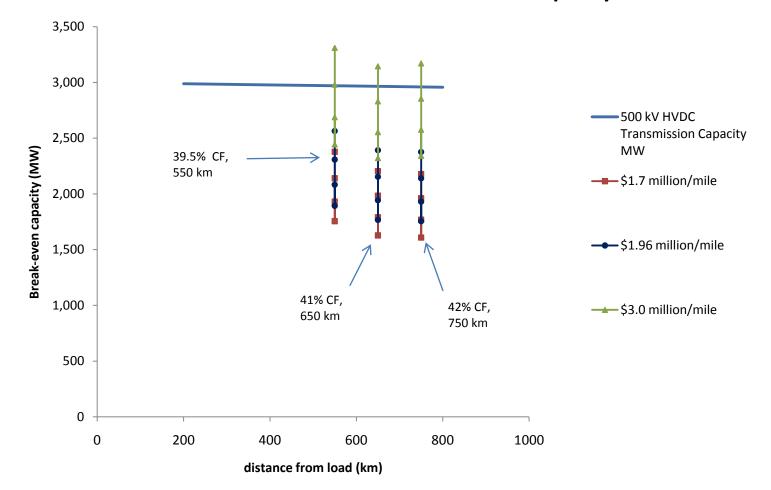
Note: Sometimes efficient to undersize transmission

Breakeven capacity


For each wind class, there is a breakeven capacity where:

Turbine capital cost savings = Capital cost of additional transmission


Compared to reference wind resource – 36% CF wind requiring 50 km new transmission


HVAC & HVDC Transmission Power Transfer Capacity

765 kV Transmission Break Even Capacities

500 kV HVDC Transmission Break Even Capacity

HVAC & HVDC Transmission Capital Cost Estimates

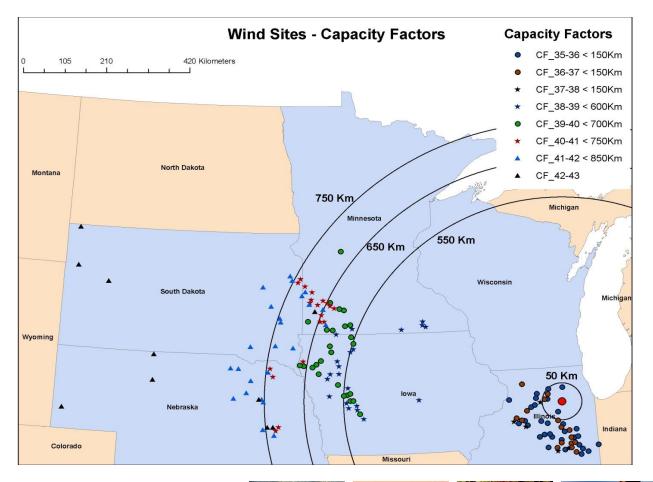
	115 kV	230 kV	345 kV	500 kV	765 kV	500 kV HVDC
High Estimate	\$590,000/mi	\$910,000/mi	\$2,730,000/mi	\$2,200,000/mi	\$3,200,000/mi	\$3,000,000/mi
Middle Estimate			\$1,700,000/mi	\$1,910,000/mi	\$2,170,000/mi	\$1,960,000/mi
Low Estimate	\$210,000/mi	\$300,000/mi	\$1,370,000/mi	\$1,500,000/mi	\$2,000,000/mi	\$1,700,000/mi
	MTEP08	High: MTEP08	MTEP08	High & Low: LBNL	High & Low: LBNL	High: LBNL
Source		Low: LBNL		Mid: SPP EHV Overlay	Mid: SPP EHV Overlay	Mid: Gateway South
						Low: WREZ

MTEP 08: Midwest ISO Transmission Expansion Plan 2008

LBNL: Lawrence Berkeley National Laboratory, The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

SSP EHV Overlay: Updated Southwest Power Pool EHV Overlay Study

Gateway South: Gateway South and Transwest Express Conceptual Technical Report


WREZ: Western Renewable Energy Zones Generation & Transmission Model

HVDC converter \$250 million (3000 MW)

Potential Wind Sites

NREL Eastern Wind Integration Study (EWITS) sites

