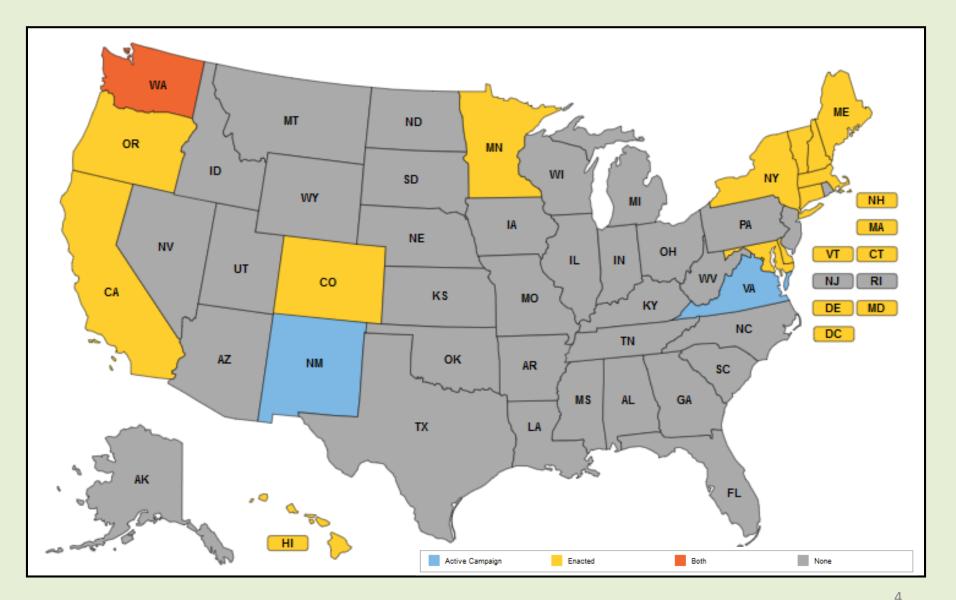
RICHMOND, VIRGINIA COMMUNITY SOLAR IMPACT ANALYSIS: IMPLICATIONS FOR FUTURE STATE-LEVEL POLICY PROPOSALS

Gilbert Michaud

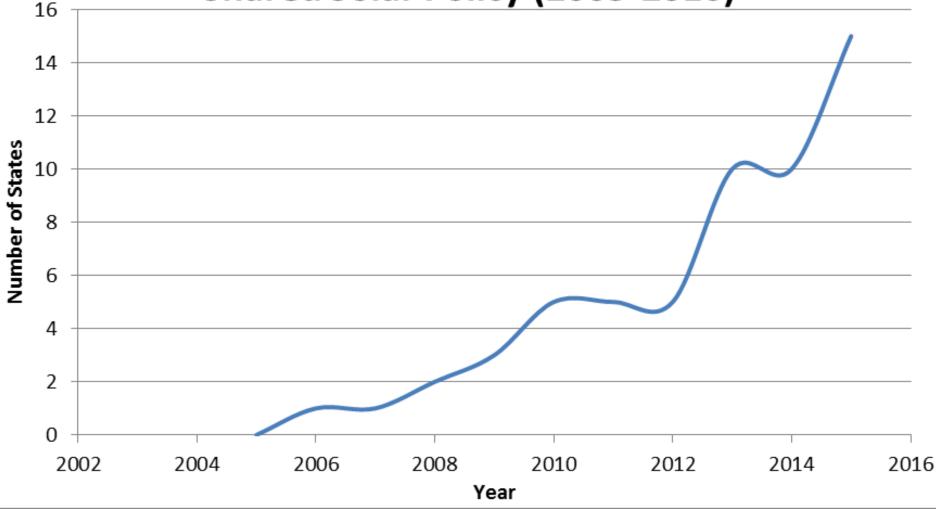
Voinovich School of Leadership and Public Affairs, Ohio University

Prepared for the 47th Annual Mid-Continent Regional Science Association (MCRSA) Conference


Introduction

- Solar photovoltaic (PV) systems
 - Decreasing costs
 - Increasing deployment
- Diverse public policy approaches to encourage solar PV (e.g., NEM, RPS, tax credits, tax exemptions, loans)
- Community Shared Solar
 - Lack of feasibility of certain customers to own solar PV systems (e.g., lack of homeownership, roof orientation, shading, size)
 - Roughly 25% of U.S. households & businesses have the structural ability to install panels on their roofs (Denholm & Margolis, 2008)

Community Shared Solar


- Economies of scale and ideal project locations
- Financial benefits and mitigate concerns about climate change and rising energy costs (Bomberg & McEwan, 2012); local control (Weinrub, 2010); community cohesion (Bollinger & Gillingham, 2012; Irvine, Sawyer, & Grove, 2012)
- Three common models
 - Utility Owned
 - Special Purpose Entity Owned
 - Nonprofit Owned
- In Virginia, no rules that require utilities to permit community shared solar

U.S. Community Shared Solar Policy

Note. Figure from Shared Renewables HQ (2015) website. http://www.sharedrenewables.org/community-energy-projects/

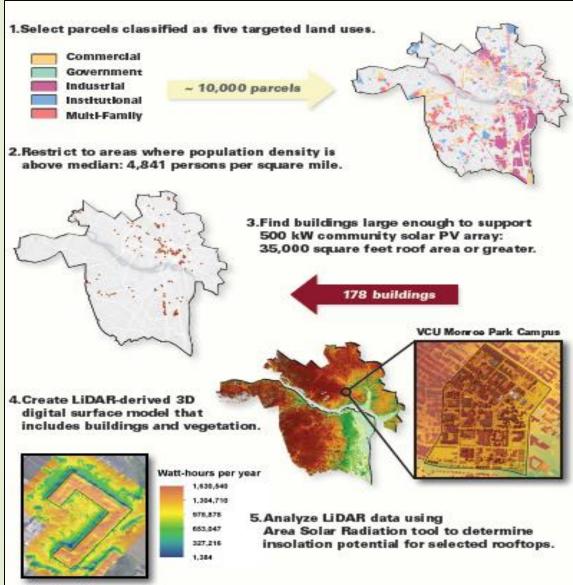
U.S. State Adoption of Community NEM / Shared Solar Policy (2005-2016)

Note. Compiled by author from National Conference of State Legislatures (2015) and Shared Renewables HQ (2016). 5

Research Questions

• What is the feasibility for community shared solar installations in the Richmond, VA region?

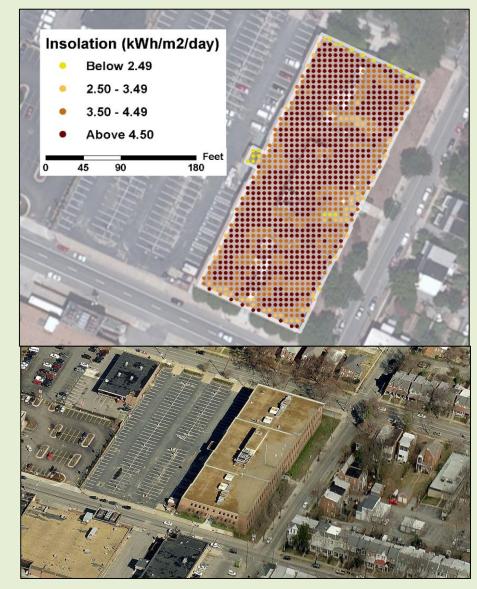
• What impact could such installations have?


 What is the path forward to initiate community shared solar projects in the Richmond, VA region?

Methodology

- GIS to find properties in Richmond with strong potential for community shared solar array
 - Parcels, Land Use, Structures (City of Richmond)
 - Population Density (U.S. Census Bureau)
 - LiDAR Point Cloud (USGS)
- Environmental Impact
 - Energy produced
 - CO₂ reduced
 - Equivalent homes powered & cars taken off the road
- Jobs and Economic Development Impact (NREL's JEDI)
 - Project costs
 - Local spending
 - Labor impacts (direct, supply chain, and induced)
 - Earnings impacts

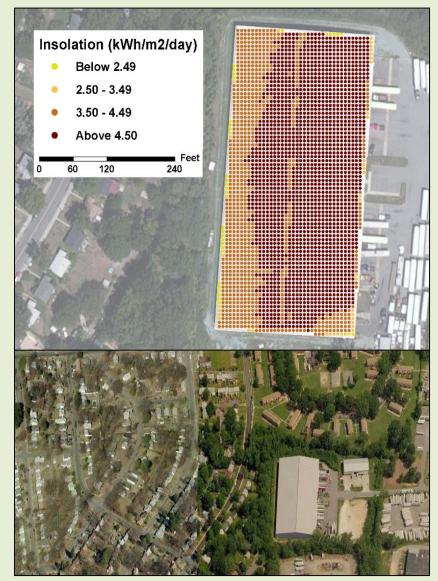
"Light detection and ranging." Pulsed laser scanning to create accurate 3D model of surfaces.


Site Selection

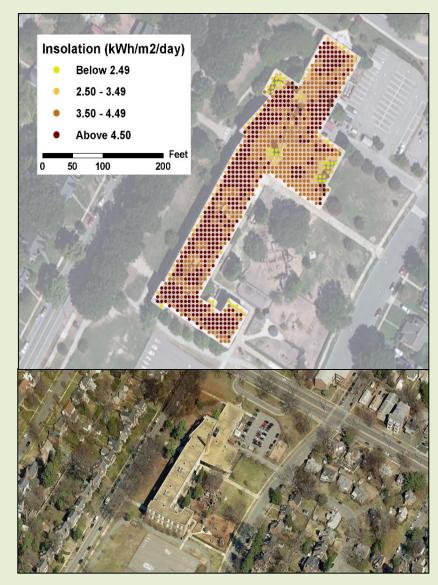
Cedar-Broad Apartments


Site 1: Carytown Place (Commercial)

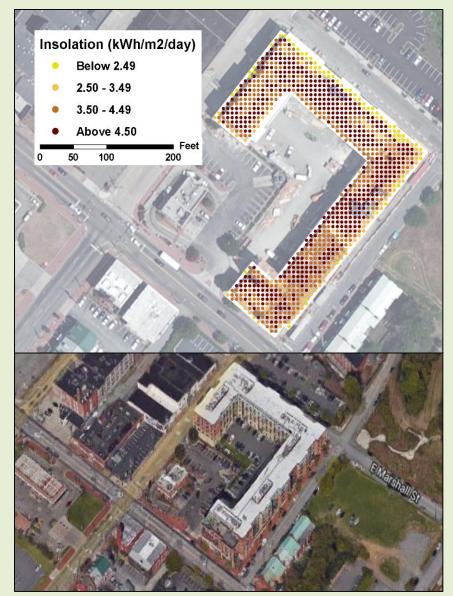
- 10 North Nansemond St.
- Average Insolation: <u>4.38</u>
 <u>kWh/m²/day</u>
- Potential system size: <u>511 kW</u>
- Annual energy production: <u>612,840 kWh</u>
- Retail and residential market
- Simple roof geometry


Site 2: Children's Museum (Gov't)

- 2626 West Broad St.
- Average Insolation: <u>4.16</u>
 <u>kWh/m²/day</u>
- Potential system size: <u>471</u>
 <u>kW</u>
- Annual energy production: <u>536,973 kWh</u>
- Educational opportunity
- Several roof obstacles


Site 3: Old Dominion Warehouse (Ind.)

- 1598 Carter Creek Rd.
- Average Insolation: <u>4.46</u>
 <u>kWh/m²/day</u>
- Potential system size: <u>4,470</u>
 <u>kW</u>
- Annual energy production: <u>5,460,583 kWh</u>
- Very high solar yield
- Simple, low-pitch roof


Site 4: Mary Munford School (Inst.)

- 211 Westmoreland St.
- Average Insolation: <u>4.26</u> <u>kWh/m²/day</u>
- Potential system size: <u>482</u>
 <u>kW</u>
- Annual energy production: <u>561,890 kWh</u>
- Strong existing community
- High-income area

Site 5: Cedar-Broad Apartments (M.F.)

- 1820 East Broad St.
- Average Insolation: <u>4.20</u>
 <u>kWh/m²/day</u>
- Potential system size: <u>469</u>
 <u>kW</u>
- Annual energy production: <u>538,502 kWh</u>
- On-site member base
- Transient market

Environment / Economic Development

- Community Shared Solar PV:
 - Reduces GHG emissions to mitigate future global warming and climate change impacts
 - Reduces water use (from power plants) and criteria air pollutants (e.g., SO₂, NO_x, & PM 2.5)
 - Protects ecosystems
 - Provides energy security (e.g., rising energy costs; terrorist attacks; natural disasters)
 - Enhances community cohesion (e.g., peer-effects)
 - Creates job opportunities (e.g., solar industry) and local spending

Environmental Impact

		CO ₂		
Community Solar Capacity	Energy Produced (kWh/year)			Equivalent # Cars off Road
250 kW	307,969	332,474	23	47
500 kW	615,938	664,948	46	94
1 MW	1,231,875	1,329,895	92	189
2 MW	2,463,750	2,659,791	184	377

Note. Author calculations.

- Energy Produced (kWh/yr.) = kW × 0.75 (de-rating factor) × 4.5hr/day (insolation) × (365 day)/yr.
- CO2 Reduced (lbs.) = kw × (1079.57 lbs GHGs)/MW × MW/(1000 kw).

Installation Costs and Local Spending

 National Renewable Energy Laboratory's Jobs and Economic Development Impact (JEDI) model

Community Solar Capacity	Project Installation Cost (\$)	Local Spending (\$)
250 kW	1,441,618	873,618
ZJUKV	1,441,010	0/3,010
500 kW	2,883,235	1,747,235
1 MW	5,776,470	3,494,470
2 MW	11,532,940	6,988,940

Note. Author calculation from http://www.nrel.gov/analysis/jedi/download.html

Jobs and Earnings Impact

Community Solar Capacity		Earnings	Chain	Supply Chain Earnings (\$)	Induced Impacts Jobs	Induced Impacts Earnings	Total Jobs	Total Earnings
250 kW	4.2	332,700	3.5	258,000	2.4	136,400	10.1	721,100
500 kW	8.3							
1 MW		1,330,700						
2 MW		2,661,400				1,090,800		

Conclusions

- High theoretical potential for community shared solar in Richmond, VA
 - 178 buildings suitable for 500 kW system
- Weak solar energy incentives and utility lobbying has hindered community solar development
- Recommendations
 - Educate public through outreach programs
 - Understand potential sites and environmental / economic development impacts
 - Ease transition via group billing legislation or utility owned community shared solar program

Questions?

- For additional questions/comments concerning this research, please email me at michaudg@ohio.edu
- Thank you