Employment, Income, Revenue and Land Use Impacts of Biofuel Mandates in Pacific Northwest Regions

Incorporating Land Classes into Regional CGE

Olga V. Livingston, PhD, PNNL, olga.livingston@pnl.gov, (509) 372-6546

David M. Anderson, PNNL, Ryan S. Butner, PNNL Eric L. Jessup, PhD, WSU, Hayk Khachatyran , PhD, WSU Jeremy Sage , PhD, WSU, Claudio O. Stöckle, PhD, WSU JunJie Wu, PhD, OSU, Fanglin Ye, PNNL

> MCRSA Conference June 6-8, 2012 Bloomington, Minnesota

Pacific North

Objectives

- Separate out irrigated land and dry land as primary factors in agricultural production.
- Analyze impact on the regional economy of demand induced by the mandated blend ratio of ethanol.
- Analyze effects of improved ethanol yield resulting from outcomes of DOE's Genomic Science Program (GSP).

Pacific Northwest NATIONAL LABORATORY

Basic CGE Structure

Region and Crop Selection

Study Areas

Data

- Implan SAM 2008
- GIS spatial USDA's 2009 Cropland Data Layer
- NASS imagery 2008
- Biomass feedstock potential estimates for MSW and Forest Residue (OSU)
- Land cost estimates (PNNL)
- CropSyst simulation of switchgrass yields (WSU)
- Comprehensive feedstock inventory based on a 5-mile grid (PNNL)
- Feedstock transportation cost estimates (WSU)

Pacific

Assumed Average Annual Yield

CropSyst simulation of switchgrass yields, Dr. Claudio Stöckle, WSU:

Pacific Nort

Proudly Operated by Battelle Since 1965

L36: Lowland cultivar originating at about 36° N Latitude U40: Upland cultivar originating at about 40° N Latitude

7

Switchgrass Yield Probability

CropSyst simulation of switchgrass yields, Dr. Claudio Stöckle, WSU

Feedstock Inventory Map

Biomass Availability by Feedstock, Mid-Columbia

Transportation cost vs. biomass availability,

Dr. Eric Jessup, Dr. Hayk Khachatyran and Dr. Jeremy Sage, WSU

Transportation Cost (\$/ton)

Total Biomass Availability

Transportation cost vs. biomass availability,

Dr. Eric Jessup, Dr. Hayk Khachatyran and Dr. Jeremy Sage, WSU

Structural Assumptions

- Capital:
 - Mobile (free to move between activities), supply is variable
 - Supply, demand, and the return on capital are endogenous
- Labor:
 - Mobile (free to move between activities), supply is variable
 - Supply, demand, and the return on capital are endogenous

Land:

- Categorized into irrigated land and dry land.
- Transferable between sectors.
- The overall supply is fixed.
- Demand and the land returns are endogenous.

Elasticity of substitution between production factors

- Higher in industrial and service sectors (Cap and Lab)
- Lower in agricultural sectors (Land, Cap and Lab)
- The demand elasticity for production factors
 - High for labor and capital
 - Low for land

Bio Refining Technology Potential

Baseline and Counterfactual Scenarios

Baseline, Mid-Columbia*: <u>Tax credit, Mandate low at 2% blend rate</u>

* Neither the production of switchgrass or cellulosic ethanol currently exist in WA.

OR	FedGov	Volumetric Ethanol Excise Tax Credit (VEETC)	\$0.45/gallon		
	FedGov	Cellulosic Biofuel Producer Tax Credit	\$0.46/gallon		

Counterfactual Scenarios: <u>Tax credit + meeting mandate + ethanol yield growth</u>

- 1. Tax credit + Mandate demand level at 6.15% blending ratio (MD)
- 2. Tax credit + MD and 5% yield growth in biorefining technology
- 3. Tax credit + MD, 10%
- 4. Tax credit + MD, 20%
- 5. Tax credit + MD, 50%

Value of Output, \$Million

Reduction of GHG, Million Ton Equivalent

M & 50%

Value of Output, % change

■M&5% ■M&10% ■M&20%

■MD

Composite Commodity Price Change, %

Aggregate HH Income, \$ Million						
HHD9	150K+	755				
HHD8	100-150K	887				
HHD7	75-100K	1107				
HHD6	50-75K	1437				
HHD5	35-50K	853				
HHD4	25-35K	489				
HHD3	15-25K	424				
HHD2	10-15K	164				
HHD1	< 10K	183				

Total EV, \$ Million

Irrigated Land Demand, Quantity

Factor Return, % Change

- As feedstock conversion rate improves, GDP does not change. Reallocation between sectors.
- Blending mandate increases bio refining and switchgrass growth
- Gasoline production and agricultural sectors that extensively use irrigated land experience contraction.
- Growth in feedstock conversion rate reverses this effect. The primary impact is illustrated by changes in irrigated land demand.
- Emission reduction is observed for all analyzed scenarios.

Project Team

P.I. David M. Anderson

Contributors/CO-Pls

Pacific Northwest National Laboratory, (509) 375-6781, <u>dma@pnl.gov</u>

Pacific Northwest National Laboratory:

Olga V. Livingston, PhD Fanglin Ye Ryan S. Butner

Washington State University:

Claudio O. Stöckle, PhD Eric L. Jessup, PhD Hayk Khachatyran, PhD Jeremy Sage, PhD

Oregon State University

JunJie Wu, PhD

Pacific Northwes NATIONAL LABORATORY

Appendix

Adding Land and Biofuels to Regional CGE

Switchgrass Yield Probability

CropSyst simulation of switchgrass yields, Dr. Claudio Stöckle, WSU

Current policy

FedGov	Volumetric Ethanol Excise Tax Credit (VEETC)	\$0.45/gallon	Tax Credit
FedGov	Cellulosic Biofuel Producer Tax Credit	\$0.46/gallon	Tax Credit
WA	Property/Leasehold Tax Exemption for		
	Manufacturers of Biodiesel/Alcohol Fuel	Varies	Tax Exemption
OR	Biomass Production/Collection Tax Credit		
	(for Grass and Woody Biomass)	\$10/ton	Tax Credit

	-								
	2008	State	Implied	2008	Share of	Implied	Percent of	Federal	Federal
	Gasoline	Mandate	Ethanol	Proportion	EISA 2007	Ethanol	Total	Portion	Manda
	Consumption	(%)	Demand	of US	Goal*	Demand**	Gasoline	(MGY)	te(%)
	(MGY)		(MGY)	Gasoline	(MGY)	(MGY)	Demand		
WA	2,684	2%	53.68	1.94%	165.1	165.1	6.15%	111.41	4.15%
OR	1,529	10%	152.88	1.11%	100.3	152.9	10.00%	-	-
ID	655	10%	65.53	0.47%	43.0	65.5	10.00%	-	-
NW	4,868	6%	272	3.52%	299.43	383.5	8%	111.41	2.29%

* The US Environmental Protection Agency has cut the 2010 US cellulosic ethanol volume mandate from 100 million gallons to 6.5 million. Quota to be rest by EPA every year.

** Assuming the US total production quota of 8.5 billion cellulosic ethanol for this analysis.

Ag Sectors Aggregation

Other Livestock	-
Poultry and egg production	6.78
Animal production except cattle and	
poultry and e	4.65
Forestry	-
Forestry- forest products- and timber	45.37
Commercial logging	-
Commercial Fishing	-
Commercial hunting and trapping	4.63
Oil and Gas Extraction	-
Extraction of oil and natural gas	0.77
Drilling oil and gas wells	-
Other Mining	-
Mining coal	-
Mining iron ore	-
Mining copper nickel lead and zinc	-
Mining gold silver and other metal ore	
mining	-
Mining quarrying stone	7.32
Mining and quarrying sand gravel	10.11
Mining and quarrying other nonmetallic	-
Support activities for other mining	-
Power Utilities	-
Electric power generation- transmission	52.76
not unique commodity (fed govt electr)	79.76
not unique commode (S&LG electr)	103.78
Gas Utilities	-
Natural gas distribution	17.49
2Water Utilities	•
Water sewage and other systems	2.59

Grain Farming	
Grain farming	111.38
Vegetable Farming	-
Vegetable and melon farming	413.76
Horticulture Farming	-
Tree nut farming	444.40
Fruit farming	-
Greenhouse and nursery	
production	12.52
Economic Crop Farming	-
Oilseed farming	0.27
Tobacco farming	-
Cotton farming	-
Sugarcane and sugar beet farming	2.45
Other Crop Farming	-
All other crop farming	345.27
Cattle	-
Cattle ranching and farming	68.52
Dairy	-
Dairy Cattle and Milk Production	66.73

Feedstock and Refining Assumptions

* Neither the production of switchgrass or cellulosic ethanol currently exist in WA.

Switchgrass Production*	Mid-Columbia	Palouse	Cellulosic Ethanol*	
Irrigated land rent (\$/acre)	335	281	Conversion rate (gallons/ton)	76.5
Yield (ton/Acre)	14	12	Plant capacity (MGY)	53.5
Cost (\$/acre)	884	807	Cost of SWG ethanol (\$/gallon)	2.68
Cost (\$/ton)	64	68	Imposed starting quantity* (MG)	9.5

